

Rodent Microdialysis and Neurochemistry Capabilities

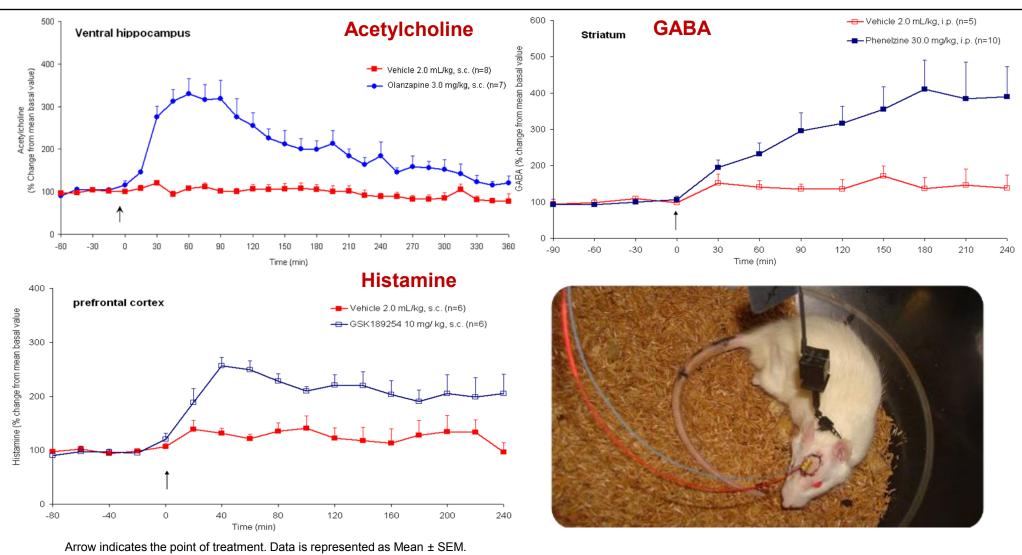
Discovery Research Suven Life Sciences Ltd

Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad-500034, India. Contacts: info@suven.com, nvsrk@suven.com

Contents

S. No	Title	Page No
1	Overview	3
2	Neurotransmitters in Rat Brain	4
3	Peptides in Rat Brain and Spinal Cord	5
4	Blood, Brain and Dermal Microdialysis in Rats	6
5	Biomarkers	7-11
6	Contacts	12

In Vivo Microdialysis Overview

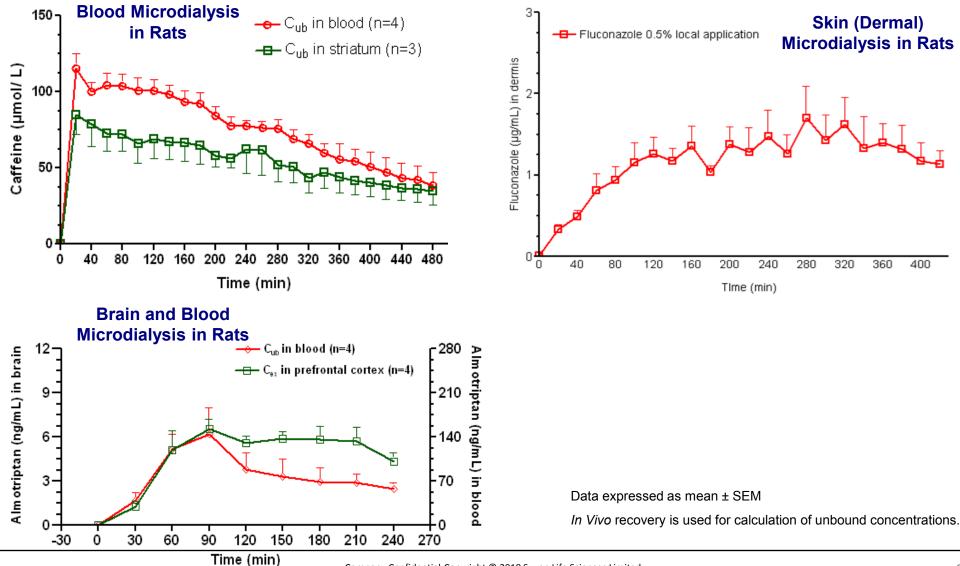

Suven provides a full spectrum of *in vitro*, *ex vivo* and *in vivo* neurochemistry techniques that can be used to determine the mechanism of action, efficacy and side-effect profile of centrally-acting drugs.

Suven has validated an intracerebral microdialysis in freely-moving animals. Microdialysis is widely used to derive important information that helps us to understand brain neurochemistry and pharmacological mechanisms of test compounds that demonstrate efficacy in treatment of CNS disorders.

Neurotransmitters		Species			Analytical Instruments	
\checkmark	Acetylcholine	\checkmark	Rat	√	LC-MS/MS	
\checkmark	Histamine	\checkmark	Guinea pig		API-4000, API-6500	
\checkmark	Amino acids	\checkmark	Mouse	\checkmark	HPLC- Fluorescence	
	Glutamate, GABA, and glycine			\checkmark	HPLC- Electrochemical	
\checkmark	Monoamines				detector	
	Dopamine, norepinephrine and			√	ELISA	
	serotonin				Absorbance, Fluorescence	
\checkmark	Monoamine metabolites					
	5-HIAA, HVA and DOPAC					
\checkmark	Peptides					
	Substance-P and PGE2					

In Vivo Microdialysis Neurotransmitters in Rat Brain

In Vivo Microdialysis Peptides in Rat Brain and Spinal Cord



Substance P in Rats **Prostaglandin E2 in Rats** 300. Vehicle 50 µL, intraplantar Formalin (5%) 50 µL, intraplantar (% Change from mean basal value) **Dorsal Horn Striatum** 500 --B- PGE2, ELISA 200 Substance P -O- PGE2, LC-MS/MS (% Change from mean basal value) 400 $100 \cdot$ Prostaglandin E2 300 Π 200 -60 0 60 120 180 240 TIme (min) 400 - Vehicle 50 µL intraplantar Glutamate (% change from mean basal value) **Dorsal Horn** 100 Formalin (5 %) 50 µL intraplantar 300 Formalin (5%) 50µL, intraplantar Π -45 -30 -15 -60 0 15 30 90 105 120 45 60 75 200 Time (min) 100 Data expressed as mean ± SEM. -40 -30 -20 -10 30 40 50 0 10 20 60 80 90 100 70 Arrow indicates the point of treatment. Time (min)

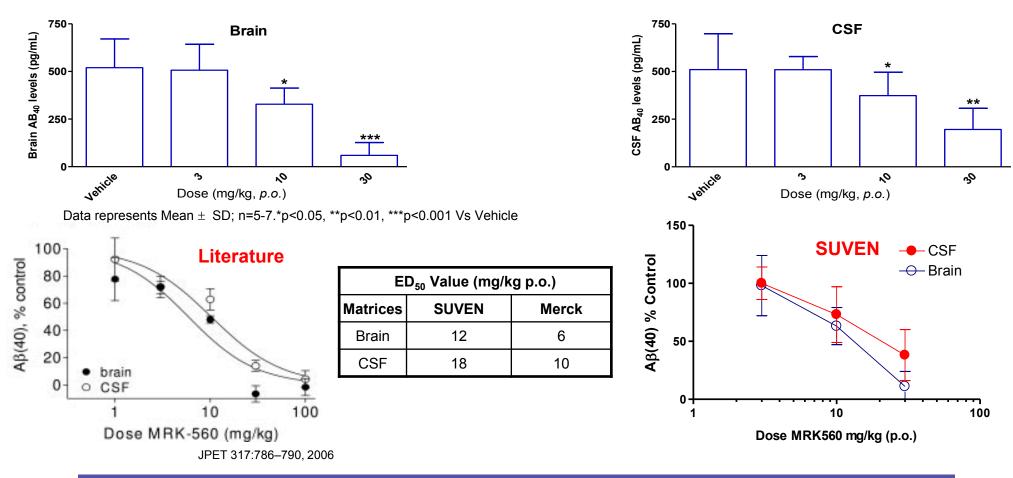
In Vivo Microdialysis

Blood, Brain and Dermal Microdialysis in Rats

Company Confidential Copyright © 2018 Suven Life Sciences Limited

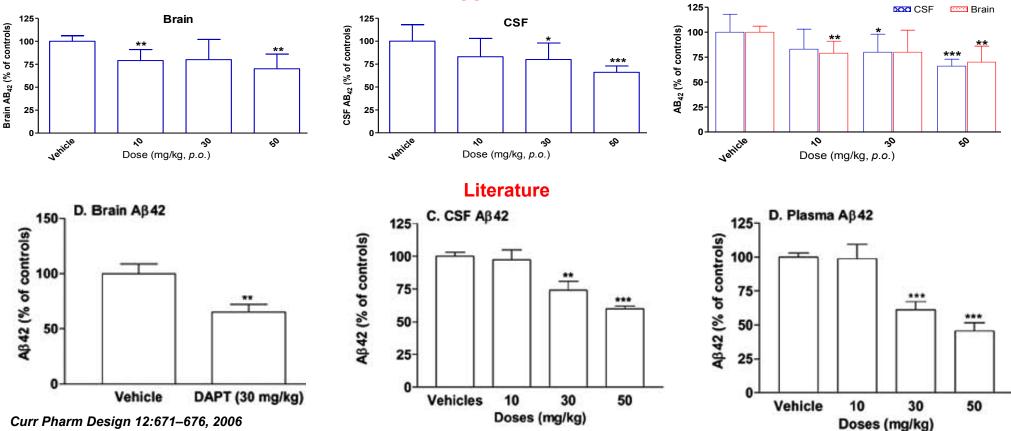
Biomarker, Proof of Concept Assays

Biomarkers


Overview

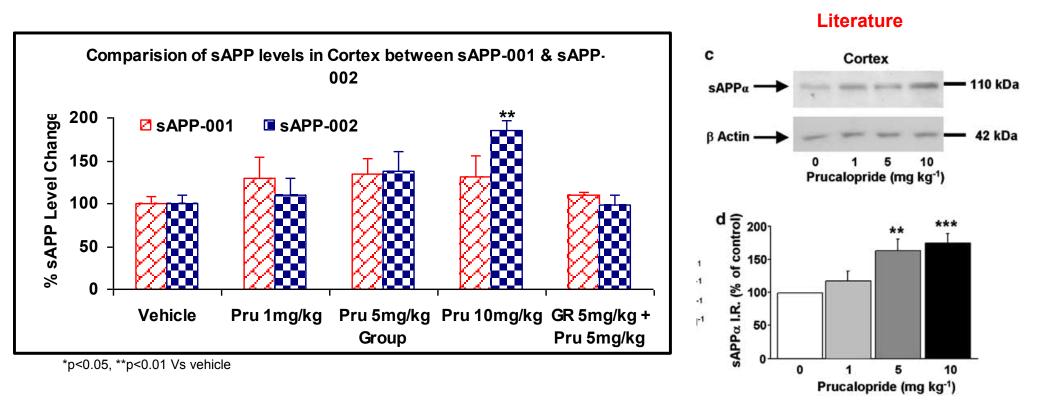
Analyte	Matrix	Bioanalysis
Beta Amyloid (1-40)	CSF, Brain	ELISA
Beta Amyloid (1-42)	CSF, Brain	ELISA
Corticosterone	Plasma/Serum	ELISA
Inositol 1-phosphate	CSF, Brain	ELISA
Interleukins	CSF, Brain, Plasma	ELISA
Monoamines	CSF, Brain, Plasma	HPLC-ECD/ LC-MS/MS
Monoamine Metabolites	CSF, Brain, Plasma	HPLC-ECD/ LC-MS/MS
Prolactin	Plasma/Serum	ELISA
Prostaglandin PGE2	CSF, Brain	LC-MS/MS
Soluble APPa	CSF, Brain	ELISA
Substance-P	CSF, Brain	LC-MS/MS
Tele- methylhistamine	CSF, Brain	LC-MS/MS

Biomarkers A β (1-40) Modulation in Rat



% reduction in $A\beta_{(1-40)}$ levels after treatment with MRK-560 was observed to be inline with the literature

Biomarkers Aβ (1-42) Modulation in Rat


SUVEN

% reduction in $A\beta_{(1-42)}$ levels after treatment with DAPT was observed to be inline with the literature

Biomarkers sAPP α Modulation in mouse

Br J Pharmacol 15, 883-892, 2007

5-HT₄ receptor agonist, prucalopride significantly increased the level of sAPPα in adult mice cortex (results in line with literature)

Contacts

Venkat Jasti Chairman & CEO E-mail:info@suven.com

Ramakrishna Nirogi Vice President, Discovery Research E-mail: nvsrk@suven.com