Discovery Research

In-Vitro ADME Capabilities

Discovery Research Suven Life Sciences Ltd Serene Chambers, Road-5, Avenue-7, Banjara Hills, Hyderabad-500034, India.

Contacts: @suven.com, nvsrk@suven.com

Overview

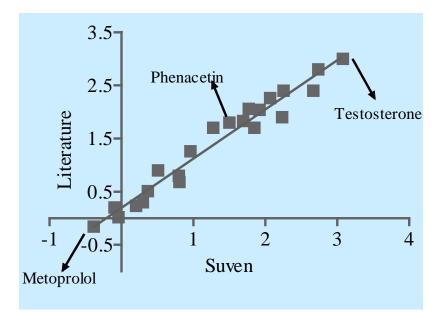
S. No	Title	Page No
1	Capabilities	3
2	Solubility and Distribution coefficient	4
3	Unbound fraction	5
4	P-glycoprotein (P-gp) Substrate assessment	6-7
5	Phenotyping	8
6	Enzyme Kinetics and CYP Inhibition	9
7	Time Dependent Inhibition	10
8	CYP Induction	11
9	Uptake Transporter	12
10	Quality Assurance	13
11	Contacts	14

Capabilities

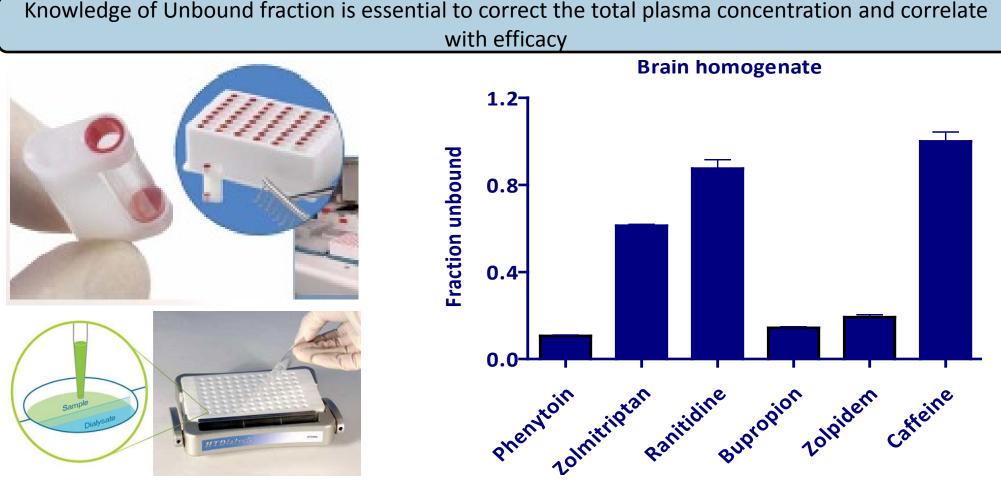
Absorption	Solubility (Kinetic), Lipophilicity (LogD7.4), Permeability (PAMPA and Caco-2) and Efflux assays (Caco-2)
Distribution	Protein binding (plasma, brain homogenate, and microsomes), Blood to plasma partitioning (Species: rat, dog, and human)
Metabolism	Metabolic stability and intrinsic Clearance (S9, microsomes, rP450, hepatocytes), Reaction phenotyping (CYP and non-CYP, Enzyme kinetics, Chemical inhibition method and RAF), Metabolite identification and GSH trapping
Drug-Drug Interactions	Direct inhibiton (IC ₅₀ and Ki), Time dependent inhibition (Single point, IC ₅₀ shift, KI and Kinact, Dialysis) CYP Induction (mRNA expression and enzyme activity) Uptake transporters: substrate and inhibition assays (OAT1, OAT3, OCT1, OCT2, OATP1B1, OATP1B3, MATE-1 and MATE-2K)

Solubility and Distribution coefficient

Kinetic solubility can help interpret the complication arising from the compound precipitation during biochemical, functional, and cell based assays Identify poor soluble compounds that reduce productivity in drug discovery and development

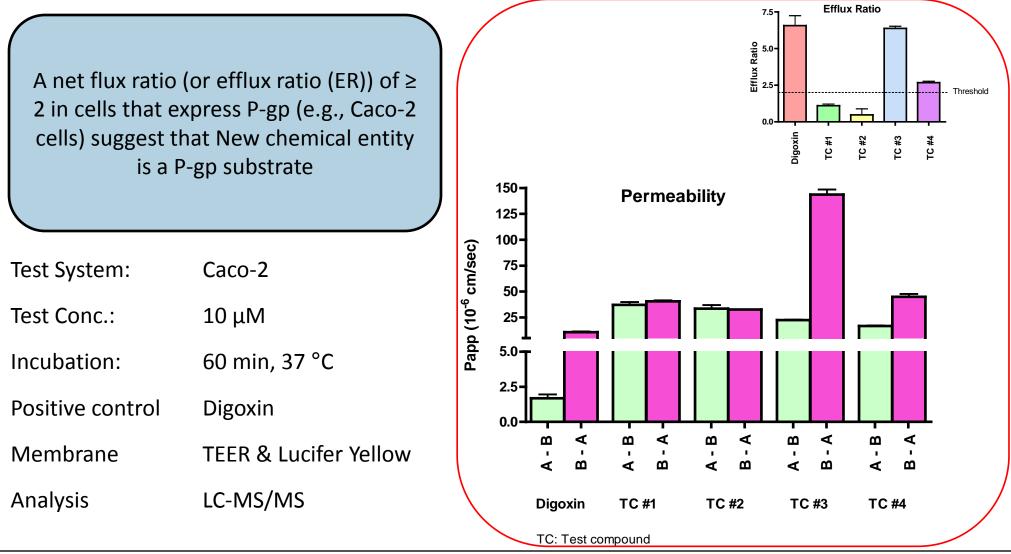

Kinetic solubility

Phosphate buffer 7.4 Simulated gastric fluid Simulated intestinal fluid


Lipophilicity is a key factor in determining the permeation of physiological membrane, protein binding, and target affinity

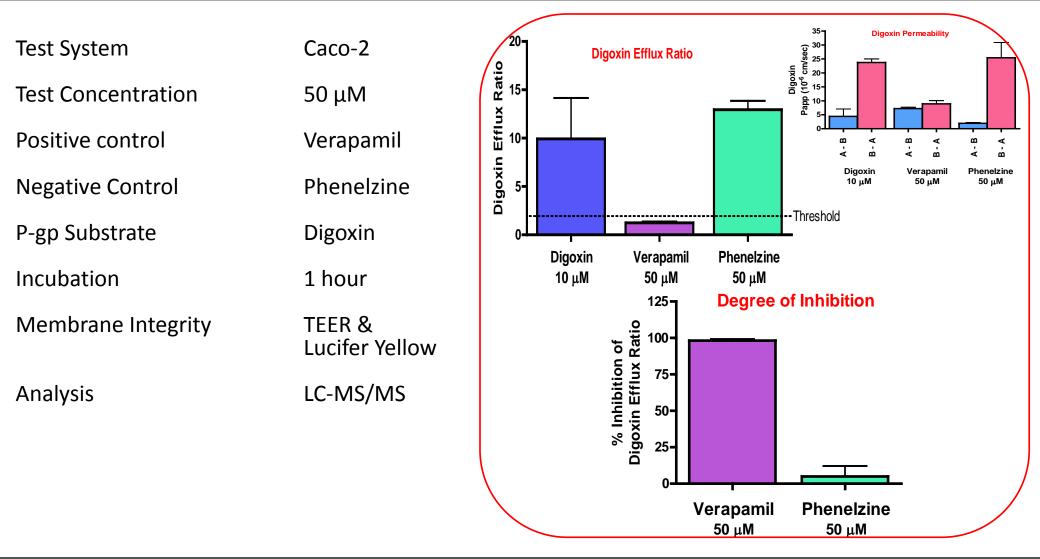
Log D 7.4

Miniaturized shake-flask method n-Octanol / Phosphate buffer 7.4 Cyclohexane / Phosphate buffer 7.4



Unbound fraction (plasma/brain homogenate/microsomes)

Rapid Equilibrium Dialysis (RED) and High Throughput (HT) Dialysis


P-glycoprotein (P-gp) Substrate assessment

P-glycoprotein (P-gp) Inhibitor assessment

Phenotyping (Chemical inhibition method and RAF)

Contribution ≥ 25% by an enzyme is considered significant based on in vitro phenotyping studies and Human Pharmacokinetic study

Evaluate the role of CYP1A2, CYP2B6, 121 CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4/5 and additional enzymes including MAO, FMO, and UGT

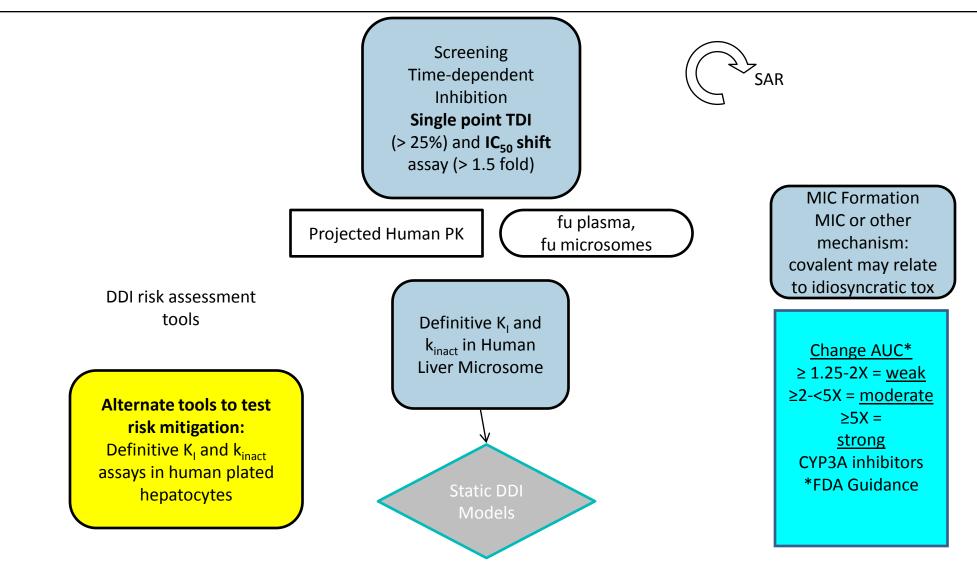
In vitro Phenotyping studies include chemical inhibition and Metabolism in recombinant enzymes (RAF approach)

	HLM	rCYP	- CL-RAF	Mean CYP abundance		Chemical inhibition Method
P450	CL _{int} (uL.min⁻¹.mg⁻	CL _{int} (uL.min ⁻¹ .pmol	(pmol.mg⁻ ¹)	(pmol.mg ⁻	CL-ISEF	
	1)	CYP ⁻¹)	/	1)		
1A2	7 ± 0.3	$1.2\pm0.05^{\text{a}}$	$\textbf{5.6} \pm \textbf{0.5}$	39	0.14 ± 0.01	0.4-
2A6	1298 ± 58	23 ± 0.5	$\textbf{56.9} \pm \textbf{3}$	27	2.11 ± 0.1 5	0.3-
2B6	3 ± 0.2	$\textbf{0.13}\pm\textbf{0.01}$	19.8 ± 1	16	1.24 ± 0.07 Ĕ	0.2
2C8	$\textbf{777} \pm \textbf{38}$	13 ± 2	58.8 ± 6	22.4	$\textbf{2.62} \pm \textbf{0.3}$	0.1-
2C9	96 ± 6	$\textbf{4.3}\pm\textbf{0.1}$	$\textbf{21.2} \pm \textbf{1}$	61	$\textbf{0.35} \pm \textbf{0.01}$	
2C19	$\textbf{0.4}\pm\textbf{0.1}$	$\textbf{0.15}\pm\textbf{0.01}$	$\textbf{2.8}\pm\textbf{0.4}$	11	$\textbf{0.25} \pm \textbf{0.04}$	
2D6	33 ± 0.3	32 ± 1	1.0 ± 0.03	12.6	0.08 ± 0.002	isinit pion toget mine eithe stine idine
2 E1	8 ± 0.3	$\textbf{0.13} \pm \textbf{0.001}$	$\textbf{62.0} \pm \textbf{2}$	64.5	$\textbf{0.96} \pm \textbf{0.03}$	Artemisinin Bupropion dogreet anine selegime sertraine public dopidine
3A4	399 ± 33	18 ± 1.3	22 ± 1	93	0.24 ± 0.01	

Enzyme Kinetics and CYP Inhibition

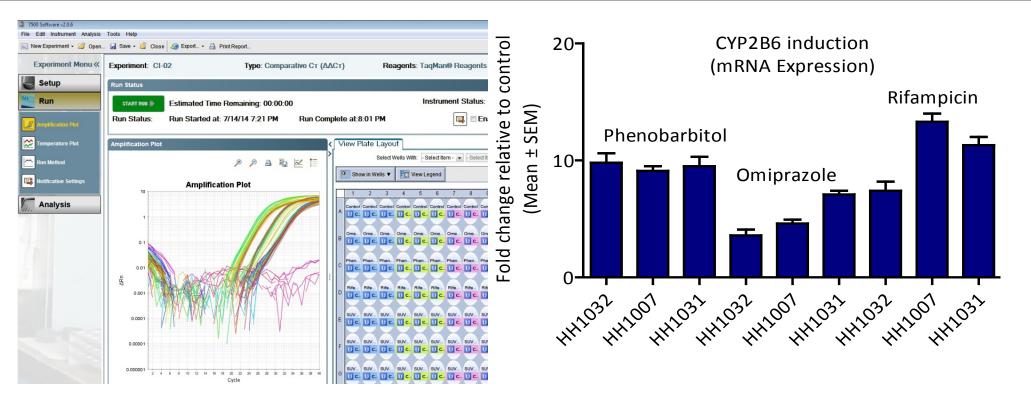
CYP Inhibition (IC₅₀ and Ki) CYP1A2, CYP2B6, 121 CYP2C8, CYP2C9, CYP2C19, CYP2D6, and CYP3A4/5

Basic Model (I/Ki) or Mechanistic Static Model to predict drug interaction risk

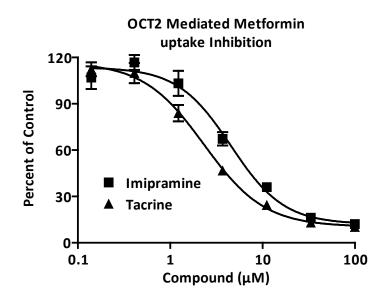

	HLM			rCYP		
P450	K _m (uM)	Vmax (pmol.min ⁻¹ .mg ⁻¹)	Kinetic Mechanism	K _m uM	Vmax (pmol.min ⁻¹ .pmolCYP ⁻¹)	Kinetic Mechanism
1A2	59 ± 3	395 ± 10	MM	82 ± 5.9^{a}	31 ± 2.7	NC
2A6	0.5 ± 0.07	649 ± 10	MM	0.5 ± 0.004	11.4 ± 0.3	MM
2B6	70 ± 3	187 ± 7	SI	88.4 ± 10.6	11.9 ± 0.5	SI
2C8	2.7 ± 0.2	2097 ± 51	MM	0.5 ± 0.1	6.6 ± 0.1	MM
2C9	9.7 ± 0.5	933 ± 17	MM	1.1 ± 0.04	5.0 ± 0.1	MM
2C19	92 ± 8	38 ± 2	MM	13.4 ± 0.7	2.0 ± 0.01	MM
2D6	4.6 ± 0.1	152 ± 4	MM	0.2 ± 0.1	6.3 ± 0.1	MM
2 E1	177 ± 9	1384 ± 61	MM	101.5 ± 2.2	12.8 ± 0.1	MM
3A4	3.0 ± 0.2	1197 ± 63	MM	3.1 ± 0.2	56.1 ± 0.9	SI

Validated marker activities for major CYP isoforms in HLM and rCYP

^a- S50 instead of Km; ^b - Negative co-operativity, clearance read from plot of v/[S] vs [S];


Time Dependent Inhibition

CYP Induction



CYP Induction evaluated by "Gold standard method" using cryopreserved plateable hepatocytes from three donors at three concentrations of new chemical entity with both mRNA expression and enzyme activities monitored using RT-PCR and LC-MS/MS respectively. Vehicle control, Positive control, and Negative controls are included in the assay

Uptake Transporter (IC₅₀ assay)

Transporter	Substrate	Positive control	Absolute IC ₅₀ (uM)
OAT1	Para-amino hippuric acid (PAH)	Flufenamic acid	0.5
OAT3	Estrone 3-sulfate (E3S)	Indomethacin	0.7
0 CT1	Tetraethyl ammonium (TEA)	Verapamil	5.0
О СТ2	Metformin	Imipramine	6.4
OATP1B1	Estradiol β-D Glucuronide	Sulfasalazine	3.4
OATP1B3	Estradiol β-D Glucuronide	Rifampicin	2.3

Compound ID	OCT2 Abs IC ₅₀ (μM)	Literature Reported
Imipramine	6.4	3.3
Tacrine	3.4	3.1

Quality Assurance

- Independent Quality Assurance team
- Quality System Procedures (QSP's) for Quality System Management and Standard Operating Procedures (SOP's) for Operation, Calibration, Maintenance of Equipment's
- Document and Data Control, Conducting Internal Audits, Study Specific Audits
- Dedicated Archive facility for the retention of the records
- Facility audited and approved by many global pharmaceutical companies and majority of Indian Pharma Companies

Contacts

Venkat Jasti Chairman & CEO E-mail:info@suven.com

Ramakrishna Nirogi Vice President, Discovery Research E-mail: nvsrk@suven.com